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Abstract— This research aims to equip a social robot to assist
visually impaired individuals to navigate and better perceive
their surroundings to socially engage with people. The work
focuses on enabling the visually impaired user to identify one’s
destination in a social scenario and move independently towards
it. A novel Group Aware Pose Estimation(GAPE) algorithm,
to identify a position for the new group member to join is
implemented. A modified RRT* for path planning, an obstacle
avoidance framework and follower aware controller is used
to guide the user towards the goal. Multimodal feedback
is provided through audio and custom-designed hand-held
direction indicator ”NAVI-Stick”. The results obtained for
the proposed GAPE algorithm works in real-time with pose
metric(based on Field of view) evaluated to be over 90%
for groups less than 6 members. Trials were conducted for
guiding a blindfolded person towards the desired human group.
The maximum Euclidean distance between user’s final position
and final goal position for N=15 trials is 0.98m. The average
Euclidean distance-based positional error of the follower aware
controller is 0.0943m.

Index Terms— Social robot, Intelligent guidance, Social nav-
igation, Human-Robot Interaction, Human Pose Estimation,

I. INTRODUCTION

As humans continue to explore the extent to which
robotics can influence human lives, it is essential that all
sections of society benefit from its applications. Globally,
around 1 billion people have moderate to severe vision
impairment[1]. It is extremely unfortunate that the visu-
ally impaired individuals continue to face concerns with
independent navigation and accurate perception of their
surroundings[2]. Many such individuals struggle to indepen-
dently decide their desired goal position and navigate in an
unfamiliar indoor environment. Moreover, in a social setup, a
visually impaired person lacks the awareness to identify and
join a group of people. The main motivation of our work
is to assist a visually impaired person to engage in social
interactions effectively.
Robotic canes and robotic walkers [3]–[5] are major types of
navigation aids that are prevalent and are becoming popular.
[6] improves the paradigm of a walker by better perception
of the environment and using haptic and audio feedback
to guide the user. [7] uses leash tension to describe hybrid
human robot interaction to implement a guide dog like robot
for guiding the visually challenged. In a social scenario,
the navigation needs to incorporate spatial affordances and
human groups as highlighted in [8]. However, most of these

1Vishnu T P, vishnu096@gmail.com
2Prof. Abhra Roy Chowdhury (corresponding author), Centre for Product

Development and Manufacturing, Indian Institute of Science, Bangalore
abhra@iisc.ac.in

Fig. 1: Gazebo simulation environment depicting the targeted
scenario

works fail to use social cues from the environment to make
the user more independent. Moreover, the haptic devices used
are expensive. Guiding a person in a social scenario requires
safety and social interactions to be considered.The work in
[9] modifies the motion primitives of RRT for social aware
navigation. For effective guidance robots, the notion of a
user following the robot needs to be incorporated during
trajectory planning and obstacle avoidance. [10] tracks the
human effectively and plans using a human-robot model.
Following are the main contributions of this paper:

• An algorithm for identifying a goal pose for the visually
impaired user, to join the group of people standing at a
distance is implemented.

• Path planning using RRT* with modifications is used.
An obstacle avoidance framework is implemented with
trajectory optimization based on guidance scenarios.

• Follower aware controller is used for guiding the user
to the goal.

• A custom-made handheld direction indicator ”NAVI-
Stick” was designed and fabricated to assist the visually
impaired person to follow the robot.

• Implementation and experimental validation of the pro-
posed system for the visually impaired in social scenar-
ios.

II. METHODOLOGY

The intended human user of the social robot is a visually
impaired person in an indoor hall in a social gathering like
a conference. There are groups of people interacting with
each other. One person from a group calls the user to join
his group by calling out his name and raising his hand to
produce a calling gesture. This work implements necessary
components on a social robot to perceive and guide the
visually impaired person in this scenario( Fig. 1).
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Fig. 2: Process flow of the implemented system.

Fig. 3: Different configurations in which people group them-
selves. Circle is fitted to use symmetry in the arrangement.
The vector representation is used to infer from the assumed
symmetry.

A. Social Inference

According to the targeted social scenario, the robot must
identify the person calling the user. With consensus from the
user, the robot estimates the socially acceptable goal position
based on the group of people([Fig. 2]).

1) Calling person identification:: Speech recognition
module based on DeepSpeech [12] initially identifies the
name of the user, when called. The microphone array in
the robot detects the direction of the voice. Based on the
received information, the robot turns its head to the detected
direction and look for hand raised gesture. Human detection
is performed using the Yolov3 model [13]. Human skeletal
detection using Google media-pipe [14] is used to identify
the person with the raised hands(indicating calling gesture).

2) Group Aware Pose Estimation(GAPE): : After identi-
fication of the person calling the user, the user is notified
through audio. Once the user confirms to go towards the
person, the next stage of processing starts. The group of
people containing the target person needs to be differentiated
from the scene. The spatial information and orientation
between different humans are used to obtain a social graph
with the target person. Grouping is done using a probabilistic
Support Vector Machine (SVM) classifier trained on coherent
motion and pose indicators as in [15]. Position, where the
user can join, is determined based on the group identified
to contain the target person. Humans, when interacting in

Algorithm 1 Group Aware Pose Estimation(GAPE)

Require: Xi =< xi, yi >, N= Number of humans in the

group.

1: Xc ←
(
∑N

i Xi)

N

2: while change > threshold do
3: min

Xc

(
∑m
i=0 pfi(x)2)

4: fi = (
∑N

j=0

√
(xj−xc)2+(yj−yc)2

N )

5: p = scalar valued function

6: change = current− previous estimate of Xc

7: end while
Require: ~Xi is vector pointing from Xi to Xc and R =

Radius of circle

8: ~S =
∑N
i=0

~Xi

9: θ = arctan
~S

‖~S‖
10: X̄n = Xc +R ∗ [cos(θ) sin(θ)]T

11: for points on the circle Yi do
12: Xn 3 C is minimum

13: C = d(X̄n, Yi) + (d(Xi, Y j)− dmin)

14: d(X,Y ) is the euclidean distance between X and Y

15: dmin = minimum euclidean distance Xi

16: end for
17: X̂n = -Ŝ

a group, arrange themselves symmetrically to face each
other effectively. This symmetry is assumed for the proposed
algorithm. As a prepossessing step, the 3D coordinates of
people in the scene are converted to a top-view 2D frame
(as shown in Fig. 3). Our region of interest is only the group
containing the target person. Let x,y,z be the coordinates
of a human in the group. According to the requirements, a
scaling ratio k and translation vector T=[a b]T can be used
for transformation as shown in (1).[

xnew
ynew

]
=

[
k 0 0
0 0 k

]xy
z

+

[
a
b

]
(1)

The newly transformed coordinates Xi are used to fit a circle
over the human group using the method of least square(lines
1-5 in Algorithm 1). A vector pointing from each human
to the center of the circle is added up to form a resultant
vector as shown in Fig. 3. This provides a measure of how
the new person must be aligned to ensure symmetry in the
group. Lines 8 to 10 calculates an initial estimate position
on the circle using the direction of resultant vector. This is
further refined by putting one more constraint. The person
joining is expected to maintain a minimum distance dmin
based on the proxemics [16] involved in social interaction.
Lines 11 to 13 select the best position on the circle that
satisfies the proximity constraint and the symmetry-based
initially computed estimate. The final estimated position is
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Fig. 4: Wiring step in RRT*.

Xn. The final orientation X̂n is estimated to be in the
opposite direction of the resultant vector to preserve the
group symmetry.

B. Robot Navigation

1) Path planning: Path planning is done using a modified
RRT* [17] on the occupancy grid map generated using RTAB
SLAM. According to the addressed scenario, it is necessary
to avoid sharp sudden turns such that the user can easily
follow the robot. If the global path planner already considers
it, there is less burden on the local planner. Therefore a
cost function that accounts for the sudden change in angle
is considered for path planning. The cost we used in the
ChooseParent and Rewire step in RRT* is defined as:

Cost = w1 ∗ dist(i, j) + w2 ∗ (θj − θi) (2)

Where, dist(i, j) is the euclidean distance between current
node and candidate node. θi for candidate node i represents
the angle made by the line joining node and current node
with the x-axis.(θ1,θ2 indicated in Fig. 4). Similarly, θj
is the angle made by the line joining current node and
the parent node with the x-axis. The term θj − θi in cost
function emphasizes wiring of nodes that align in the same
direction. The weights w1 and w2 are finalized using Twiddle
algorithm [18], from multiple experiments with different
scenarios where the position of obstacles are varied. The
planned path is further smoothed out using Cubic Splines.

2) Obstacle avoidance: Dynamic obstacle avoidance is
not favored as the robot is guiding the user. Therefore slow-
ing down and stopping in the vicinity of moving obstacles
is implemented (Fig.5). The robot slows down based on
the estimated obstacle position using a simple positional
controller. For static obstacle avoidance a trajectory around
the obstacle is planned. P = [p1, p2, ...] be the list of poses
in the trajectory.Given the start pose ps = [xs, ys, θs] and
the target pose in the global path after the obstacle be
pg = [xg, yg, θg]. The trajectory planning can be formulated
as a non-linear program :

min
z∈P

f(z) subject to (3)

p1 = ps, pn = pg

g(z) = 0 linear constraints
k(z) = 0 kinematics

The kinematics for the differential drive robot is represented
using k(z) = 0. Other constraints in velocity or rate
of change in the heading can be represented using linear

Fig. 5: The framework used for navigation of guidance robot.

Fig. 6: NAVI-Stick used for navigational assistance.

constraints g(z). The objective function that is minimized
takes care of avoiding the obstacle based on the constraints
set up for the problem. Obstacle is represented using circle in
2D by center (xc, yc) and Radius R.The objective function
f(z) is defined as:

f(x, y) = (
∂O

∂x
dx+

∂O

∂y
dy)2 (4)

Where O(x, y) describes the obstacles in 2D.The constraint
that is necessary to produce an admissible optimal path for
the targeted scenario is the rate of change in the heading. It
is restricted to an upper threshold so that the robot does not
take quick and sharp turns.

C. Guidance

1) Controller: The differential drive model [19] is used
for designing the controller. Apart from path tracking, con-
troller also tries to maintain an optimum distance with the
user following the robot. An optimum distance is fixed at
doptim. The real-time distance between robot and user is
received from depth camera at the back of robot. Using the
error in heading eθ and error in distance to user ed linear
velocity and angular velocity v and w are calculated as:[

v
w

]
=

[
vdesired −Kp1eθ +Kp2ed +Kd1ėθKd1ėd

Kp3eθ +Kd3ėθ +Ki

∫
eθ

]
(5)

The gains Kp1,Kp2 , Kp3 , Kd1 , Kd2 Kd3 are calculated
based on experiments. The Ziegler Nichols tuning method
[20] was used to come up with initial values. The terms ed
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Fig. 7: Results of GAPE algorithm with groups of people in different orientations and numbers [Top View].

and ėd helps in controlling the velocity of the robot based
on the error in maintaining optimum distance with the user.

2) NAVI-Stick: The user is guided along the path by
providing multi-modal feedback. In addition to the voice
input, the user receives a better sense of direction using
NAVI-Stick shown in Fig. 6. The device has a direction
pointer in the front that indicates the direction to move. It
has finger shaped concavity where the user can place his
finger for a more intuitive sense of direction as the pointer
rotates. The calculation of direction also incorporates the
orientation in which the device is held by the user using an
IMU(MPU9250). It is interfaced with Esp8266 NodeMCU
which receives the data sent through WiFi and rotates the
pointer using a servo motor. As depicted in Fig. 5, the user
is tracked using a camera at the back of the robot. If the
user is not detected, stop signal is sent to the controller. The
robot searches for the user by changing its heading and once
found, a path is planned from the user’s current position to
the robot. The depth camera is used to compute the euclidean
distance of user from the Robot. Thus the user is localized
on the map based on which the path is planned. The user is
then guided to the robot using NAVI-Stick.

III. EXPERIMENTS AND RESULTS
The experiments were conducted using the MISTY II

Robot. It runs on Snapdragon 410 and Snapdragon 820
mobile processors, Windows IoT Core, and Android 8. Jetson
Nano was used for parallel processing.Occipital Structure
Core depth sensor in MISTY II enables SLAM capabilities.
Intel Realsense camera D435i is mounted at the back of
MISTY’s head to monitor the visually impaired user fol-
lowing the robot. 3 far-field microphones using Qualcomm®
FluenceTM PRO is used for sound localization. The overall
implementation was tested in Gazebo simulation [21] in an
environment as shown in Fig. 1. Python and MATLAB were
used to simulate and validate the individual components
of the system. An indoor environment with humans and
obstacles as described in Target Scenario was set up. Real-
time experiments were conducted with a blindfolded person.

A. Group Aware Pose Estimation
The algorithm was validated by using groups of people

with varying orientations and numbers. The first set of exper-

GAPE algorithm
Number of peo-
ple in group

FOV metric Distance to near-
est member[m]

3 97.8 1.1
4 94.4 0.72
5 96.7 0.88
6 77 0.34
7 75.3 0.49

TABLE I: GAPE algorithm analysis.

iments evaluated the estimated pose by mere inspection. Fig.
7 shows the results obtained for experiments with people
arranged in groups in different formations. The top-view of
the scene and estimated joining position are displayed in the
Figure with the transformed axes. A pose metric based on
the Field Of View(FOV) (as indicated in Fig. 7) was used
to evaluate the results.

F =

∑N
i=0 bi
N

(6)

bi =

{
1, if estimated position is in the FOV of member i
0, otherwise

Given the number of people in the group is N, a metric
F defined in (6) was used. bi is a binary number, which
is 1 if the estimated pose for the new person falls in the
FOV of the person i. The visual field of the human eye
spans approximately 120◦ of arc??. Thus an arc of 120◦

is used for checking if the estimated pose is in the FOV of
each group member. The results were also evaluated based
on the minimum distance the new person maintains with
a group member. A distance in the range of 0.5-2.5 m is
considered based on proxemics. The results obtained in Table
(1) show that the algorithm does well when the number
of people in the group is less than 6. The proximity also
decreases as the number of people in the group increases.
Real-time experiments also reveal that the algorithm doesn’t
perform well when people in the group are standing in a
linear fashion.

B. Robot Navigation

The global path planning was tested in various scenes
with obstacles(humans) represented using circles of diameter
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(a) Planned path using Modified RRT*. (b) Planned path using RRT* (c) Change in heading in final path, compared
between RRT* and modified RRT*.

Fig. 8: Global path planner

(a) Trajectory planned around obstacle (b) Rate of change in heading vs time (c) Analysis

Fig. 9: Optimal static obstacle avoidance

2.7m placed at different positions. The modification in cost
function in RRT* is evaluated based on the change in angle
from one node to another.Maximum length of a node is
set to be 1.2m. Path planning based on both methods is
performed multiple times in the same scene and averaged
to compare results. For the scenario in Fig. 8, the change
in heading is compared between the two algorithms in Fig.
8c. The RRT* has a steep turn as indicated in Fig. 8b which
corresponds to the maximum difference of change in heading
for the two planners(Fig. 8c). The path produced by RRT* is
optimal based on distance. The modified planner tries to go
around the object and results in a longer path when compared
to RRT* but results in less sharp turns as shown in Fig.
8(a) and 8(b).Fig. 9a shows the static obstacle avoidance
in action. The magnitude of rate of change in heading was
constrained to be less than 12 degrees/s. Optimal trajectory
to the goal pose is planned without colliding with the static
obstacle using Eq. 3. The Fig. 9b shows the rate of change
of heading angle of robot with time. Point A in the Fig.
9a has a maximum change in heading in a sec. The same
point shown in Fig. 9b validates that the maximum rate of
change of heading is within the defined constraint. The static
obstacle avoidance was tested in different scenarios. The

velocity is fixed at 0.25m/s. Objects with varying radius are
used as obstacles and the start point was fixed. Obstacle
width measure O defined as:

O =
wo
wr

(7)

where wo width of an obstacle and wrwidth of the robot
is used to analyze the success percentage (Fig. 9c). The
obstacle avoidance has success percentage of 98.4% when
the obstacle width measure is 2.3. The percentage measure
of maximum heading change is defined as:

h =
c

90
% (8)

The maximum change in heading in 10cm of path, c is
normalized by a fixed 90◦ change in heading for the same
distance to get a percentage measure. The results highlight
that as the obstacle size increase the avoidance of the obstacle
by satisfying the constraints become difficult.

C. Controller
The controller used is analyzed in Fig. 10a. The variation

of velocity of MISTY based on the distance to the following
user over the trial is illustrated in Fig. 10a. The points in
the green region show that the velocity is decreasing when
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(a) Variation of robot velocity with distance to
following user.

(b) Path tracking trial performed with
robot for user guidance.

(c) Error in x and y when path tracking.

Fig. 10: Results of the designed controller for a trial.

Fig. 11: (a) Path followed by MISTY and the user in an indoor trial depicted on the grid map. (b)Snapshot of the indoor
trial. MISTY identifies the person calling the user, estimates the destination and guides the user towards the goal.

the distance to the user increases. As the distance to the
user decreases less than the desired distance, the velocity
increases as shown by points in yellow region. There are
few cases where velocity decreases even though the distance
is less than the desired value. These occur because the
velocity also depend upon error in heading Eq. 5, i.e the
velocity decreases when there is a sharp turn in the trajectory.
The absence of points in the red region highlights that the
controller reduces velocity as distance is more and thus
effectively tries to maintain an optimum distance of 1.75m.
The path tracking and the positional error of the controller are
shown in Fig. 10b and Fig. 10c respectively. The maximum
error in y-direction on the map occurs at point A and the
maximum error in x occurs at point B. Given the current
position of the robot X=[x y]T and desired position Xd =
[xd yd]

T , the positional error based on euclidean distance
over N time steps of one trial can be defined as:

ep =

∑N
j=0

√
(x− xd)2 + (y − yd)2

N
(9)

ep computed for each trial, averaged over 15 trials is
0.0943m. The complete experiment of the system was carried
out in a social indoor environment with a blindfolded person
(Fig. 11(b)). The Navi-stick was used along with the audio
input from MISTY by the user to navigate. The path followed

by the person is plotted against the desired trajectory in
Figure 11(a). The goal reached by user has a Euclidean
distance error of 0.96 m with respect to the desired goal.

IV. CONCLUSION
The work implemented a guidance social robot for intelli-

gent navigation with valuable social inference skills for the
visually impaired. The GAPE algorithm works effectively in
real time when social groups contain less than 6 people.
Based on the defined pose metric, groups with 6 people
show a performance of 77% and average proximity of 0.34m
with the nearest person. This algorithm works better in
cases where there is symmetry in the human group. The
path planning using modified RRT* minimize the change
in heading in the path planned. Proposed static obstacle
avoidance works with a 92.6% success rate when the obstacle
width measure is 4.1. The guidance framework employed
used Navi-Stick and audio feedback from robot to guide the
user. The follower aware controller, has an average positional
error of 0.0943m from 15 trials. Based on the conducted
trials, user is able to follow the robot using NAVI-Stick and
the maximum distance error between user’s final position and
goal position is 0.98m.
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